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Smith & Davis (J. Fluid Mech., vol. 132, 1983, pp. 119–144) considered the stability
of thermocapillary convection in a horizontal fluid layer with an upper free surface
generated by a horizontal temperature gradient. They showed that for a return-
flow velocity profile, the convection will become unstable in the hydrothermal mode
with waves propagating upstream obliquely. Their findings provided a theoretical
explanation for the defects often found in crystals grown by the floating-zone technique
and in thin-film coating processes. Their predictions were verified experimentally by
Riley & Neitzel (J. Fluid Mech., vol. 359, 1998, pp. 143–164) in an experiment with
0.75 mm thick layer of silicone oil. Their results with 1 and 1.25 mm thick layers show
that as the thickness of the layer is increased, the angle of propagation, the frequency
of oscillation and the phase speed of the hydrothermal wave instability decrease, while
the wavelength stays nearly constant. We have extended the linear stability analysis
of the problem with the effect of gravity included. It is found that when the Grashof
number Gr is increased from zero, the angle of propagation first increases slightly,
reaches a maximum and then decreases steadily to zero at Gr =18. The phase speed,
the frequency of oscillation and the wavelength of the instability waves all decrease
with increasing Grashof number. For Gr larger than 18, there is the onset of the
instability into travelling transverse waves. We have also carried out energy analysis
at the time of the instability onset. It is found that the major contribution to the
energy of the disturbances is from the surface-tension effect. As the gravitational effect
is increased, there is a reduction in the kinetic energy supply to sustain the motion
of the disturbances. We also found that it requires more kinetic energy to sustain
the hydrothermal mode of instability than that required for the travelling transverse
mode of instability. As a result, with increasing Grashof number, the kinetic energy
available for the disturbances decreases, causing the angle of propagation to gradually
decrease until finally reaching zero at Gr = 18.

1. Introduction
The stability of surface-tension-driven convection generated by a constant horizontal
temperature gradient in an infinite plane fluid layer with a free upper surface has been
studied by Smith & Davis (1983). Their results show that the most critical instability
is in the form of hydrothermal waves (HTWs) that travel upstream obliquely. The
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angle of propagation depends on the Prandtl number of the fluid. For the case in
which there is no heat transfer in the vertical direction through the fluid layer, it
decreases from 80◦ for Pr =10−3 to 20◦ for Pr =10. They also showed that with heat
transfer, the flow becomes more stable. Gershuni et al. (1992) studied the stability
of such a fluid layer in the presence of gravity. The range of Prandtl numbers
considered is from 10−3 to 10. The temperature of the fluid at the top free surface
is maintained at the same value as that at the bottom rigid boundary by vertical
heat transfer. As a result, when the surface-tension effect is small as compared with
the gravitational effect, there is an inflexing point in the velocity profile near the top
free surface, and there are two regions of unstable temperature distributions, one
each near the top and bottom boundaries. For such a layer, the critical instability is
in the hydrodynamic or the inviscid mode for Pr � 0.045, in the three-dimensional
oscillating mode for 0.045 � Pr � 0.85 and in the steady longitudinal mode due to
Benard convection for Pr � 0.8. Garr-Peters (1992) considered the stability of the
fluid layer with the free surface facing either upward or downward. The Prandtl
number range considered is 0.01 � Pr � 10. The longitudinal and transverse modes
of instability are considered in part 1 and the oblique mode in part 2 of Garr-Peters
(1992). Critical conditions for the onset of instabilities are shown as functions of Pr
with the Bond number, the ratio of the surface-tension and gravitational effects, as a
parameter.

Parmentier, Regnier & Lebon (1993) carried out stability analysis of convection in
a fluid layer both under buoyancy alone and under the combined effects of buoyancy
and surface tension. The Prandtl numbers of the fluids considered are from 0.01 to
7, and there is no vertical heat transfer through the top and bottom boundaries.
For buoyancy convection of fluids with Pr � 2.6, the flow is unconditionally stable.
For fluids with Pr less than 2.6, the instability is in the form of propagating HTWs.
For 0.01 <Pr< 0.4, the waves consist of nearly longitudinal rolls propagating with
near-90◦ angle. For 0.4 <Pr < 2.6, the propagation angle decreases to 0◦ at Pr = 2.6.
With combined forcing by gravity and surface tension for fluids with Pr> 2.6, surface
tension is the main cause of instability. For Pr = 7, as the Rayleigh number is increased,
the angle of propagation of the HTWs decreases continuously, and eventually it
is reduced to zero, with the instability motion consisting of travelling transverse
convection rolls. Mercier & Normand (1996) carried out linear stability analysis in an
effort to explain the experimental results of Daviaud & Vince (1993). It was shown in
their experiment with water that as the fluid layer thickness is increased, the instability
transitions from travelling waves into stationary rolls. Mercier & Normand (1996)
showed that such transition is possible by introducing vertical heat transfer through
the upper free surface by the use of a Biot number in the boundary condition. For
a given value of the Biot number, a limiting ratio of the Marangoni number to
the Grashof number can be determined such that when the limit is exceeded, the
stationary mode of the instability will transition to the oscillating mode. However,
to effect the transition as observed in the experiment would require the Biot number
to exceed 70, an unreasonably large amount of heat transfer. The discrepancy was
attributed to the limited lateral extend of the experimental tank. Burguete et al. (2001)
conducted experiments with Pr= 10 silicone oil in a rectangular tank with different
aspect ratios. The depth of the fluid layer varied from 1 to 10 mm. Their results show
that the onset of the instability is into oblique travelling waves in layers of small
depths and into stationary longitudinal rolls in layers of larger depths. The transition
phenomenon is in general agreement with the theoretical predictions of Mercier &
Normand (1996).



Effect of gravity on the stability of thermocapillary convection 93

The experiments of Riley & Neitzel (1998) were carried out in silicone oil with
the Prandtl number of 13.9. A total of nine experiments were conducted in layers of
depths increasing from 0.75 to 2.50 mm. In the thinnest layer of 0.75 mm, instability
in the hydrothermal mode was observed, and the angle of propagation compares
well with the predictions of Smith & Davis (1983). HTWs were also detected in two
thicker layers, 1.0 and 1.25 mm. However, in the 1.25 mm layer, HTW instability was
transitioned from steady multi-cell instability which had onset at a lower Marangoni
number. In the six thicker layers, no HTW instability was observed. The instability
motion consisted of steady multi-cells. Even with the limited amount of data on
HTW instability, the results of Riley & Neitzel (1998) indicate the changes in the
characteristics of the instabilities as the gravitational effect is increased and provide
a basis for comparison with the results of linear stability analysis with the effect
of gravity included. In the current paper, we report the results of such a stability
analysis.

2. Equations for linear stability analysis and energy balance
The idealized model of the problem is the convection in a horizontal fluid layer with
an upper free surface contained in a long tank. Convection is driven by a temperature
difference maintained at the two ends, with the left end being cooler. It is assumed
that a constant temperature gradient γ is maintained in the central portion of the
fluid away from the two ends. The origin of the coordinate system is at the centre
of the tank with the x-axis in the direction of the positive temperature gradient
and the z-axis pointing vertically upwards. To write down the basic equations in
non-dimensional terms, we use the thickness d of the layer for the scale length, d2/ν

for time where ν is the kinematic viscosity, ν/d for velocity, ρ0(ν/d)2 for pressure and
γ d for temperature.

For a Boussinesq fluid, the continuity, momentum, energy and state equations are

∇ · V = 0, (1)

∂V/∂t + (V · ∇)V = −∇p − k GrT + ∇2V , (2)

∂T /∂t + (V · ∇)T = Pr−1∇2T , (3)

ρ = ρ0[1 − α(T − T0)]. (4)

In the above equations, the Grashof number Gr = gαγ d4/ν2 with α = − ρ−1
0 ∂ρ/∂T ;

k is the unit vector in the z-direction; and the Prandtl number Pr = ν/κ , in which κ is
the thermal diffusivity. The surface tension η of the fluid is assumed to vary linearly
with T :

η = η0 − σT (T − T0) (5)

in which σT > 0. The boundary conditions on the velocity are V = 0 on all
solid surfaces and a balance of shear stresses at the upper free boundary. The
top and bottom boundaries are assumed to be insulating with respect to heat.
We analyse the stability of the system after steady flow conditions have been
established.

In the mid-section of the tank, we assume that the basic flow is parallel, and the
temperature Tb(x, z) = γ x + Tb(z), where γ is the constant temperature gradient. We
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obtain the return flow velocity and temperature distributions:

ub(z) = (Gr/192)F1(z) + (Ma/16) F2(z),

F1(z) = 32z3 − 12z2 − 12z + 1,

F 2(z) = −12z2 − 4z + 1,

⎫⎪⎬
⎪⎭

(6)

Tb(z) = Pr [Gr G1(z) + Ma G2(z)],

G1(z) = z5/120 − z4/192 − z3/96 + z2/384 + z/192 − 29/15360,

G2(z) = −z4/16 − z3/24 + z2/32 + z/32 − 11/768.

⎫⎪⎬
⎪⎭

(7)

In the above equations, the Marangoni number is defined as Ma = γ σT d2/μν. We
note here that our definition of Ma differs from that of Riley & Neitzel (1998)
by a factor Pr. In figure 1 we show the basic velocity ub(z) and temperature Tb(z)
at Gr =0, 10, 20 and 40. It shows that the fluid in the layer becomes more stably
stratified as Gr is increased.

We analyse the stability characteristics of the parallel flow by assuming small
perturbations in the normal mode form:

[u′(z), v′(z), w′(z), T ′(z)] exp[σ t + i(Axx + Ayy)] (8)

in which σ = σr + iσi . When these perturbations are substituted into the governing
equations (1)–(3) and higher-order terms are neglected, we obtain the linear stability
equations. The perturbation equations in the normal mode form with the primes
deleted are

iAxu + iAyv + Dw = 0, (9)

σu + iAxubu + wDub = −iAxp +
(
D2 − A2

x − A2
y

)
u, (10)

σv + iAxubv = −iAyp +
(
D2 − A2

x − A2
y

)
v, (11)

σw + iAxubw = −Dp + GrT +
(
D2 − A2

x − A2
y

)
w, (12)

σT + iAxubT + u + wDTb = Pr−1
(
D2 − A2

x − A2
y

)
T , (13)

with boundary conditions

u = v = w = DT = 0 at z = −1/2, (14)

w = DT = 0, Du = −iAxMaT, Dv = −iAyMaT at z = 1/2. (15)

In these equations D denotes d/dz.
Chebyschev pseudo-spectral collocation method (Canuto et al. 1988) was used

to solve the eigenvalue problem (9)–(15). The resulting complex matrix eigenvalue
problem was solved by using subroutine CQZHES.f, downloaded from netlib
(www.netlib.org/toms/535). Quadruple precision was used for all the calculations.
The convergence was investigated. It was found that accurate results are obtained by
using 64 collocation points.

The neutral point for a set of Gr, Pr, AX and AY is generated by using Brent’s
algorithm (Press et al. 2007). A coarse grid, typically 0.5 increment, for AX ∈ [0, 10]
and AY ∈ [0, 10] is first generated. These results allow rough estimates of the local
minima. Local minima for Ax = 0 and Ay = 0 are obtained by repeated refinement of
the grid until the increment is less than 1 × 10−4.

For the local minimum of the oblique mode in which both Ax �= 0 and Ay �=0,
the procedure is as follows. From the coarse grid results, a 3 × 3 grid with a local
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Figure 1. Basic velocity and temperature distributions for a fluid with Pr = 13.9.

minimum at the centre is identified. Grid refinement by reducing the increment by
a factor of 2 is carried out. The reduced 3 × 3 grid is re-examined to identify the
minimum. If necessary, the reduced 3 × 3 grid is shifted to the centre of the minimum.
When the minimum is centred, grid refinement is repeated. The process is repeated
until the increment is less than 1 × 10−4. After the critical point is located, a very
coarse grid of points in the AX and AY planes outside the previous coverage area are
examined to ensure there are no additional local minima.
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Before applying this set of equations to analyse the problem at hand, we validated
the equations and the method of solution by applying the method to a thermocapillary
convection problem. For a Pr= 10 fluid, the solution procedure yielded the following
critical conditions: the Marangoni number Ma = 27.386, the angle of propagation
ψ = 21.111, the wavenumber AC =2.565 and the phase speed = 0.0598. The results
of Smith & Davis (1983) for the same case are Ma = 27.386, ψ = 21.05◦, AC = 2.565
and the phase speed = 0.0598. The agreement is very good.

In order to gain a better understanding of the sources of energy that sustain the
motion of the instabilities at the time of onset, we examine the energy balance at
that time. This is accomplished by summing up the dot products of the perturbation
velocity vector and the perturbation momentum equations with σr = 0. Hart (1972)
used the same method in examining the instability of motion in a non-rotating

Hadley circulation cell. The dot product is defined as 〈ϕ∗, ψ〉 =
∫ 1/2

−1/2
ϕ∗ψ dz, where

the superscript ‘∗’ denotes complex conjugate of the function.
The resulting energy balance equation is

EM + ES + ET = ED + EK (16)

in which EM is the work done by surface tension along the free surface; ES is the
energy generated by the shear of the basic flow; ET is the potential energy generated
by vertical transport of fluids with temperature anomalies due the temperature
perturbation and is directly proportional to Gr; ED is the energy of dissipation;
and EK is the kinetic energy of the motion of the perturbations. The mathematical
expressions of these energy terms are

EM = iAxMa[(u T∗ − u∗ T )]1/2 + iAyMa[(v T∗ − v∗ T )]1/2, (17)

ES = −(〈u, w ∗ Dub〉 + 〈u∗, wDub〉), (18)

ET = Gr(〈w∗, T 〉 + 〈w, T ∗〉), (19)

ED = 2(〈Du, Du∗〉 + 〈Dv, Dv∗〉 + 〈Dw, Dw∗〉), (20)

EK = 2
(
A2

x + A2
y

)
(〈u, u∗〉 + 〈v, v∗〉 + 〈w, w∗〉). (21)

3. Results of stability analysis
We apply linear stability analysis to the experiments of Riley & Neitzel (1998) in
which the working fluid was 1 cS Dow Corning 200 silicone oil, whose thermophysical
properties were tabulated by Sumita & Olson (2003) in their paper on thermal
convection experiments in rotating shells. Its Prandtl number is 13.9 at 25◦C. The
dependence of its surface tension on temperature was measured by Riley & Neitzel
(1998) to be

η(T ) = [17.237 − 0.0755(T − T0)] mNm−1 (22)

in which T0 = 25◦C. In view of (22), σT = 0.0755 mN (mK)−1. The linear stability
equations are solved for either a given layer thickness or a given Grashof number.
It is noted that for a given thickness d of the layer, the Grashof and Marangoni
numbers are related by

Ma/Gr = σT /(ρgαd2) = const d−2.

In either case, the solution yields the critical values of Gr , Ma, the wavenumber vector
AC with its x-component and y-component Ax and Ay , the angle of wave propagation
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Gr Ma Ax Ay Ac Ψ , deg σi λ/d −σi/AcMa |σi |/2πMa

0.000 21.213 2.430 0.737 2.540 16.867 −3.259 2.474 0.060 0.024
1.823 22.829 2.382 0.853 2.530 19.709 −3.448 2.484 0.060 0.024
2.000 22.994 2.378 0.863 2.529 19.943 −3.466 2.484 0.060 0.024
3.461 24.383 2.354 0.932 2.532 21.593 −3.604 2.482 0.058 0.024
5.936 26.769 2.419 1.018 2.624 22.827 −3.731 2.394 0.053 0.022
7.520 28.024 2.654 0.959 2.822 19.871 −3.468 2.227 0.044 0.020
8.000 28.339 2.701 0.922 2.854 18.843 −3.374 2.202 0.042 0.019
9.306 29.140 2.771 0.847 2.898 17.000 −3.184 2.168 0.038 0.017

10.000 29.548 2.794 0.818 2.911 16.328 −3.101 2.158 0.036 0.017
13.000 31.250 2.872 0.707 2.958 13.824 −2.742 2.124 0.030 0.014
13.766 31.672 2.897 0.669 2.973 12.994 −2.630 2.113 0.028 0.013
15.000 32.338 2.947 0.585 3.005 11.222 −2.415 2.091 0.025 0.012
15.951 32.838 2.994 0.491 3.034 9.321 −2.219 2.071 0.022 0.011
17.135 33.443 3.058 0.312 3.074 5.828 −1.944 2.044 0.019 0.009
17.847 33.796 3.098 0.067 3.099 1.242 −1.767 2.028 0.017 0.008
18.000 33.872 3.104 0.000 3.104 0.000 −1.739 2.024 0.016(5) 0.008
19.692 34.687 3.162 0.000 3.162 0.000 −1.459 1.987 0.013 0.007
20.000 34.832 3.172 0.000 3.172 0.000 −1.406 1.981 0.013 0.006
27.381 38.107 3.393 0.000 3.393 0.000 −0.069 1.852 0.001 0.000
27.738 38.257 3.403 0.000 3.403 0.000 0∗ 1.846 0∗∗ 0∗∗∗

30.000 39.191 3.465 0.000 3.465 0.000 0.444 1.814 −0.003 0.002
35.000 41.172 3.598 0.000 3.598 0.000 1.485 1.746 −0.010 0.006
37.300 42.048 3.659 0.000 3.659 0.000 1.991 1.717 −0.013 0.008
40.000 43.052 3.729 0.000 3.729 0.000 2.607 1.685 −0.016 0.010

Table 1. Critical conditions at the instability onset for given Grashof number.

0∗ = 4.21 × 10−5, 0∗∗ = 6.01 × 10−7 and 0∗∗∗ = 3.25 × 10−7.

ψ and the non-dimensional time factor σi . These values are listed in table 1. We note
here that σi changes from negative to positive values within the range of Grashof
numbers considered. For comparison with the experimental results of Riley & Neitzel
(1998), we also show the non-dimensional values of the wavelength λ/d, frequency
|σi | 2/πMa ( = f d/Us in Riley & Neitzel 1998) and phase speed −σi/ACMa ( = c/Us

in Riley & Neitzel 1998). It is noted that with this definition of the phase speed, a
positive value indicates that the waves are moving towards the hot boundary.

The stability results were obtained for Gr = 0–40, which is the range of the
experimental Grashof numbers (based on the measured temperature gradient along
the interface) reported by Riley & Neitzel (1998) for their experiments. From table 1,
it is seen that the critical Marangoni number Ma and wavenumber AC both increase
with Gr . The angle of wave propagation ψ for the HTW mode of instability first
increases from its value at Gr = 0, reaches a maximum at Gr ≈ 6 and then gradually
decreases to 0 at Gr = 18. For 18 � Gr � 40, the onset of instability is in the form
of travelling transverse convection rolls with wave propagation angle ψ = 0◦. The
general decreasing trend of ψ with Gr and the travelling transverse convection rolls
at high Gr are similar to the predictions of Parmentier et al. (1993) for a Pr = 7 fluid.
It is also noted that σi starts out being negative at Gr = 0, increases to 0 at Gr =27.74
and becomes positive at higher Grashof numbers. This means that at Gr = 27.74, the
onset of instability is in the form of stationary transverse convection rolls. But for
Gr > 27.74, the transverse convection rolls will once again be in the travelling mode
in the opposite direction.
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Figure 2. Critical Marangoni number and angle of propagation (in degrees) for a fluid
with Pr = 13.9.

The comparisons between theoretical predictions and the experimental results of
Riley & Neitzel (1998) are shown in graphical presentations. In figure 2, the critical
Marangoni number and the angle of wave propagation ψ are shown as a function
of the Grashof number. The theoretical results show an increasing trend in the
critical Marangoni number with the Grashof number. The experimental results for
the two thinnest layers show reasonable agreement with the predicted ones, within
8% of the theoretical values. The theoretical results show that the propagation angle
increases from 16.87◦ at Gr = 0 to 22.83◦ at Gr = 5.94 and then decreases steadily to
0◦ at Gr = 18. Thereafter, the angle of propagation remains zero up to Gr =40. The
comparison with experimental values is not so good with large discrepancy for the
0.75 mm layer. For the 1.0 mm and 1.25 mm layers, there is reasonable agreement
between the theory and the experiment, but bear in mind that for the 1.25 mm layer,
HTWs developed from steady multi-cells that have their onset as the initial instability
in the experiment. In figure 3, the non-dimensional wavelength λ/d is shown as
function of the Grashof number. It is seen that λ/d stays nearly constant at 2.5
from Gr = 0–3.5. It then decreases sharply at first to 2.20 at Gr = 8 and more slowly
to 1.685 at Gr =40. The experimental values for the two thinnest layers are within
5% of the predicted values. The variations of non-dimensional phase speed and the
frequency with the Grashof number are shown in figure 4. The phase speed decreases
from 0.06 at Gr = 0 and reaches 0 at Gr = 27.74 and furthermore becomes negative
at higher Gr . Physically, this means a change in the direction of wave motion. The
three experimental points of Riley & Neitzel (1998) for both the phase speed and the
frequency compare favourably with the theoretical results.

The discrepancies between the experimental results and the predictions of the linear
stability analysis may be partially due to (i) the neglect of the lateral boundaries in
the stability analysis and (ii) the experimental instabilities that were observed at finite
disturbance amplitudes.
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4. Results of energy analysis and discussions of the results
In the energy balance equation (16), the term ET accounts for the conversion of
potential energy generated by thermal convection to kinetic energy. We analyse this
term in some detail because it is the energy directly contributed by thermal convection
to sustain the instability motion. For this purpose, we choose the critical state at a
moderate Grashof number Gr = 10. In figure 5, the perturbation streamlines at the
instability onset is shown along the x′-axis in the direction of the wavenumber vector.
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As shown in (19), ET involves the product of perturbation vertical velocity w and
perturbation temperature T. The distributions of w, T and the product 2Gr(wT ) in
the x′–z plane within one wavelength are shown in figure 6. It is seen that w and T
are out of phase, resulting in four large regions in the x′–z plane with negative values
of 2Gr(wT ). In these regions, either relatively cold fluid is being transported upward,
or relatively warm fluid is being transported downward. In either case, work input is
required to increase the potential energy of the system. As a result, ET becomes an
energy sink rather than an energy source.

For each of the Grashof numbers considered in the stability analysis, we evaluate the
five energy terms shown in (17)–(21). The results are shown in figure 7. Out of the three
energy production terms, EM is the largest; ES is two orders of magnitude smaller;
and ET has a negative value. The overall effect of increased thermal convection is to
stabilize the system. The stabilizing effect is applied directly through the energy sink
ET and indirectly through the decreasing magnitudes of EM and ES with increasing
Grashof number. The reduction in the magnitudes of EM and ES is approximately
40 % from Gr =0 to Gr = 18. The magnitude of the negative energy generated by
the thermal convection, ET , increases first sharply from zero at Gr = 0 to Gr ≈ 6
and then more slowly to attain its maximum at Gr ≈ 16. As a result, at Gr = 18, the
kinetic energy available to sustain the instability motion, EK ( = 0.0180) is reduced by
60 % from its maximum value at Gr = 0.

It is reasonable to conjecture that the reduction of kinetic energy available for
the instability motion is the cause for the decrease in the propagation angle of
HTW instabilities with increasing Grashof number. The propagation angle is reduced
eventually to zero at Gr = 18, and the instability motion consists of travelling
transverse convection rolls. For this conjecture to be true, we need to show that
the kinetic energy required to sustain the oblique mode of instability is larger than
that for the transverse mode of instability under nearly the same Grashof and
Marangoni numbers. We choose the experimental case with the 1.75 mm layer as an
example (see table 2). From stability analysis, the critical state is found at Gr =13.766
and Ma = 31.671 in the HTW mode with angle of propagation Ψ =12.99◦. There is a
neighbouring critical state with slightly higher Gr = 13.785 and Ma = 31.715 for which
the instability is in the travelling transverse convection rolls with angle of propagation
ψ = 0◦. Results of energy analysis for these two states, listed in table 2, indeed show
that EK required for the oblique mode is larger than that required for the transverse
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Figure 6. Perturbation w, T and 2Gr(wT ) in the x′–z plane at the instability onset for Gr=10.

mode of instability by about 2 %. By this reasoning, when EK is reduced below a
certain threshold, the onset of the instability will transition from the HTW mode to
travelling transverse convection rolls. In the case of silicone oil with Pr= 13.9, when
EK is reduced to below 0.0180 (the value of EK for Gr =18), the instability onset
cannot be in the oblique mode. This argument offers a plausible explanation of the
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Figure 7. Variations of the energy terms EM,ED,EK,ES and ET with Gr .

d (mm) Gr Ma Ψ (deg) Em ES × 102 ET × 10 EK × 10 ED

1.75 13.785 31.715 0 0.1829 0.2229 −0.1791 0.2015 0.1466
1.75 13.766 31.671 12.99 0.1829 0.2530 −0.1762 0.2053 0.1468

Table 2. Comparison of energy terms between the transverse and oblique modes of
instability in a 1.75 mm fluid layer.

continued decrease of ψ from Gr ≈ 6 to reach 0◦ at Gr =18. However, it does not
explain our results that ψ increases initially, reaching a maximum, and then decreases
thereafter, while energy analysis results show that EK decreases continuously from
its value at Gr = 0. It could be that there also exists a high threshold of EK above
which, regardless of the magnitude of EK , the angle of propagation will increase.

In conclusion, the results of our stability analysis compare reasonably well with
the experimental results obtained with great skill and care by Riley & Neitzel (1998).
The results of our energy balance analysis carried out at the time of the instability
onset show the following: (i) the action of the surface-tension force along the free
surface is the major contributor of energy that sustains the instability motion; (ii) in
the presence of gravity, part of that energy, which increases with Gr , is expended
to increase the potential energy of the fluid layer; and (iii) instability in the oblique
mode requires more energy than that needed for instability in the transverse mode.
These results lead to the conclusion that as the effect of gravity is increased, oblique
mode of instability will be replaced by instabilities in the transverse mode. Such mode
switching was observed in the experiments of Riley & Neitzel (1998) as the layer
thickness was increased.



Effect of gravity on the stability of thermocapillary convection 103

We thank the referee who furnished us with the critical values of Ma , ψ , Ac , and
the phase speed of the hydrothermal wave instability for a Pr =10 fluid as obtained
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